1、请同学们用圆规画出一个半径5厘米的圆并用字母标出圆心、半径和直径,画好之后相互检查以巩固刚才所学的方法。
2、测试、学生举手回答并说出理由(课件展示)
A、
图(1)中直径是()
(图1)半径是()
B、圆规两脚分开距离是4厘米,画出的圆直径是()(图2)
C、图(2)中长方形的长是(),宽是()
3、解释生活中的圆的相关运用如:
(1)车轮为什么是圆的?
(2)飞标标靶的靶圈为什么是圆的?我会适时引导加以巩固。
(四)、知识拓展
1、史料连接:有关圆的知识、名言、名句以及网页链接等,通过课件展示使学生体会到圆所蕴涵的历史与文化积淀、激发学生学数学、用数学的激情以及在以后的数学学习中更加用心。(课件展示)
2、圆与生活:(课件展示圆与人们的生活如鲜花、日落、小桥流水、雄壮美丽的建筑物以及日常生活中常见的一些体现有圆的应用的物体等等,使本课知识得以拓展,学以致用,体现数学来源于生活而又返回到生活中去,使学生感受到学数学、用数学,数学无处不在。)
三、板书设计
圆的认识
无数条r=d/2d=2r
直径半径
3、《圆的认识》优质教学设计一等奖
教学内容
苏教版九年义务教育小学数学第十一册第115~118页。
目标预设
知识技能在尝试画圆的过程中领悟画圆的方法,会正确使用圆规画圆,能结合自学、交流、探索等活动,准确理解“圆心、半径、直径”等概念。
数学思考引导学生经历探索、发现、创造、交流等丰富多彩的数学活动过程,并在这一过程中深刻把握圆的特征,发展学生的空间观念和数学交流能力。
问题解决使学生学会从数学的角度认识世界、解释生活,逐步形成“数学地思维”的习惯。
情感态度使学生初步体会圆的神奇及其所包蕴的美学价值。
教学过程
一、现象激趣,引入探究
1、交流:生活中,你在哪儿见到过圆?通过交流,使学生感受到生活中圆无所不在。
2、结合波纹、向日葵等事物,进一步带领学生领略圆的神奇,激发学生的探究欲望。
二、分层探究,体悟特征
1、画圆剪圆──首次感知。
(1)学生尝试画圆。通过交流,在师生互动过程中帮助学生掌握圆规画圆的方法,并将“画指定半径的圆”这一要求巧妙地孕伏其中。
(2)剪圆。既帮助学生感知圆的特征,又为下面的探究活动准备素材。
2、认识概念──初尝成功。
结合学生的原有经验和教师提供的“学习材料”,引导学生通过自学、交流、操作等活动。自主建构起对圆心、半径、直径等概念的理解。为探究活动做好认知层面的铺垫。
1、开放探究──体验特征。
先通过交流,引导学生初步明确探究方向。在此基础上,引导学生以小组为单位,结合手中的圆片和教师提供的相关支持性材料,共同研究圆的特征,并将研究过程中的发现记录下来。教师以合作者、组织者的身份介入学生的研究活动。对有困难的研究小组提供支持。并收集学生中有价值的发现,以备交流。
2、交流展示──共享发现。
将学生探索过程中生成的具有代表性的发现汇集成“我们的发现”,并引导全班学生相互交流。共同分享,深化理解,直至建构起对于圆的完整、系统的认识。
二、实践拓展,文化渗透
1、基本练习。
(1)判断:图中的哪一条线段是圆的半径或直径?(图略)
(2)口答:根据半径求出直径。根据直径求出半径。(题略)
(说明:本项练习没有单独设置。而是结合上面的“交流展示”环节,在师生互动的过程中自然穿插。)
2、史料链接。
介绍我国数学史上关于圆的研究记载,比如“圆,一中同长也”(《墨经》)、“圆出于方,方出于矩”(《周髀算经》)、“没有规矩,不成方圆”(《周髀算经》),拓宽学生的数学视野。此外,教师结合相应史料的介绍,比如“圆出于方,方出于矩”,将一些联想题、开放题自然穿插其中,既渗透了数学历史、文化,又培养了学生的思维能力与想像能力。
3、解释应用。
引导学生运用圆的特征解释生活中常见的自然现象,比如“水纹为什么是圆形的”,“盛开的向日葵为什么是圆形的”等,帮助学生进一步深化对圆的特征的认识。并学会从数学的角度观察和理解生活。
4、圆与人文。
借助多媒体,直观地为学生展示圆在人类历史、生活、文化、审美等各个层面的广泛应用,比如“圆与桥梁设计”、“圆与中国剪纸”、“圆与中国结”、“圆与中外建筑”、“圆与著名标志设计”等,引导学生感受圆与人类生活的密切关联,体会圆的美学与人文价值。
教学反思
数学也是一种文化,《数学课程标准(实验稿)》在前言中明确指出:“数学的内容、思想、方法和语言是现代文明的重要组成部分。”如何在课程实施过程中践行并彰显数学的文化本性,让文化成为数学课堂的一种自然本色,我们着眼“过程”与“凝聚”进行了初步的探索。
1、数学发展到今天,人们对于她的认识己经历了巨大的变化。如今,与其说数学是一些结论的组合,毋宁说她更是一种过程,一种不断经历尝试、反思、解释、重构的再创造过程。因而对于圆的特征的认识,我并没有沿袭传统的小步子教学,即在亦步亦趋的“师生问答”中展开,而是将诸多细小的认知活动统整在一个综合性、探究性的数学研究活动中,通过学生的自主探索、合作交流、共同分享等,引领学生经历了一次“研究与发现”的完整过程。整堂课,“发现与分享”成为真正的主旋律,而知识、能力、方法、情感等恰恰在创造与分享的过程中得以自然建构与生成。
2、承认“数学是一种过程”的同时,我们也应清晰地意识到,作为人类文化重要组成部分的数学,在经历了漫长的发展过程后,“凝聚”并积淀下了一代代人创造和智慧的结晶,我们有理由向学生展现数学所凝聚的这一切,引领学生通过学习感受数学的博大与精深,领略人类的智慧与文明。基于此,教学伊始,我们选择从最常见的自然现象引人,引发学生感受圆的神奇魅力;探究结束,我们介绍了中国古代关于圆的记载,拓宽学生的知识视野;最后,我们更是借助“解释自然的圆”和“欣赏人文的圆”等活动,帮助学生在丰富多彩的数学学习中不断积累感受、提升认识,努力使圆所具有的文化特性浸润于学生的心间,成为学生数学成长的不竭动力源泉!
4、《圆的认识》优质教学设计一等奖
在教学工作者实际的教学活动中,常常需要准备教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么优秀的教学设计是什么样的呢?下面是小编为大家收集的小学数学优质课《圆的面积》教学设计说课稿,仅供参考,希望能够帮助到大家。
教学目标:
1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的`转化,向学生渗透极限的思想。
3、通过小组会议交流,培养学生的合作精神和创新意识。
教学重点:推导出圆的面积公式及其应用。
教学难点:圆与转化后的图形的联系。
教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图。
教学过程:
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下平面四边形的面积公式是怎样推导的?(小黑板出示推导图形及公式)
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)
5、转化后的图形与原来的图形面积相等吗?(板书:等积)
6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?(板书:曲)
7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容。
5、《圆的认识》优质教学设计一等奖
教学内容
义务教育课程标准实验教科书青岛版小学数学六年级上册52---54页,《圆的初步认识》教学设计。课时:3课时(预习指导课、展示课、反馈课)
教学目标知识目标:
1.结合具体情境,学习圆的认识
能力目标:2.培养学生的动手能力和通过多种方法解决问题的能力。
情感目标:3.激发学生探求知识的兴趣,提高合作探索知识的能力。
教材简介
这个信息窗呈现的是各种各样的轮子。拟通过引导学生观察让学生发现各种各样的轮子都是圆的,引发学生提出轮子为什么设计成圆形的疑问,自然而然的引出对画圆以及圆的特点的'研究,明确怎样画圆、直径与半径的关系,从而明白轮子为什么设计成圆形的。
教学重、难点:
重点:圆的特征及各部分名称
难点:同圆或等圆中半径和直径的关系
教学过程(预习指导课)
第一课时
一、创设情境
谈话:同学们,你认识这些交通工具吗?仔细观察他们有什么共同点?
出示情境图,学生观察。
谈话:这些轮子都是圆形的。根据这些信息,能提出什么数学问题?
学生可能提出:轮子为什么设计成圆形的呢?…
二、探索新知
1.谈话:轮子为什么设计成圆形的呢?今天,我们就来解决这个问题。下面,请大家画一个圆,研究一下。
学生独立画圆。
谈话:同学们得到圆了吗?谁能说说你是怎样画出圆的呢?
小组内进行交流。
学生可能会出现不同的方法;
找有代表性的到黑板上来画一下。可能会出现以下几种情况:
①用图钉、细线和铅笔画图,画时图钉要固定好,细线要拉紧,就可以画出一个圆。
②用圆形的瓶子盖可以画出一个圆。
谈话:我们来看这几个同学画的,有什么问题吗?(不圆)为什么会不圆呢?你们画的时候有问题吗?
学生阐述自己的想法,师生予以评价。
谈话:怎样才能画出一个规范的圆呢?给大家介绍一种画圆的仪器--圆规。请大家用圆规画圆试一试。谁来说说你是怎样画的?
小组内交流:用圆规画圆时,先把圆规的两脚分开,定好两脚之间的距离,再把有针尖的一脚固定在一点上,把有铅笔的一脚旋转一周。
谈话:有针尖的一脚固定的这一点,叫做圆心,用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。(教师边讲边板书在黑板上)
请同学们打开书,看自主练习第2题:找出下面圆的直径和半径。(生答)
2.谈话:直径和半径是圆中不同的线段,它们之间有什么关系呢?请同学们小组合作研究一下试试?
学生小组合作。
谈话:哪个小组说一说你们是怎研究的?有什么发现?
学生可能会出现下列情况:
①通过对折,发现圆有无数条直径。
②通过画一画,我发现圆有无数条半径。
③通过测量发现同一个圆里所有的直径都相等,所有的半径都相等。
④通过对折或测量发现这个圆中,直径是半径的两倍,半径是直径的一半。用字母可以表示为:r=1/2d;d=2r。
3.谈话:谁能用今天学习的内容解释轮子为什么设计成圆形的?
三、巩固应用
1.想一想,填一填。
自主练习的第3题,让学生独立完成,然后集体交流,让学生说一说计算的方法。
2.按要求画圆。
自主练习第4题,画在练习本上,同桌互相检查。然后请学生交流一下,是怎样画的?
谈话:把有针尖的一脚固定在一点上,就是圆心,两脚分开的距离是半径。
四、全课小结
谈话:这节课你有什么收获?你对自己的表现满意吗?
6、《圆的认识》的教学反思
《圆的认识》是一节非常经典的公开课,上这节课前,我也是翻阅浏览了大量的教学设计与教学视频。《圆的认识》是在学生直观认识圆和已经较系统地认识了平面上直线图形的基础上进行展开的。为引导学生动手、动脑,主动参与到课堂中来,我从以下三点来谈谈我对本节课的设计。
一、轻巧的导入,创造积极和谐的'教学情境
《数学课程标准》倡导:“要选取密切联系学生生活的,生动的、有趣的、新颖的素材,且素材应当来源于学生的现实。”我依据课标,结合学生自身的生活,课初,我借用课件给学生们提供了有关于圆的图片的欣赏活动,然后引出生活中有哪些物体是圆形的?问题一出,立刻激起刚刚受完美景洗礼的学生们的快速思考,回到了自己的生活中并畅所欲言,我不失时机的引出了本节课的研究主题:“圆的认识”。
这样熟悉的导入,使课堂气氛变得积极和谐,维持学生的求知、思考的热情欲望,使课堂有序的地继续开展。
二、以学生为中心,让学生主动参与知识的形成过程
在教学过程中,无论是认识圆心、半径、直径,还是在学习圆的画法上,都安排了学生充分参与的实践活动,遵循理念扮演着主导的角色,以学生探索新知为核心,借着问题、言语等多方面,为学生构建了自我展示、合作交流的平台。通过折一折、画一画、议一议等独立自主、合作交流的学习方式进行探究。培养了学生的主动参与、乐与探究、勤于思考,以及分析和解决问题的能力。
三、使学生感受数学源于生活又能用于生活的道理
在课末,介入学生生活的思索,运用课本提供的素材,充分利用学生已有的生活经验。小组同学说一说:车轮为什么是圆形的?车轮应装在什么位置?引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。使学生畅所欲言,再通过课件动态演示,让学生感受正方形的车轮、椭圆形的车轮转动的感觉,从而使学生明白因为圆心到圆上任意一点距离都相等,所以只有把车轮装在圆心处,才能使车辆保持平稳的行驶。
如此挑战性强、趣味性浓的话题一出,激发了学生浓厚的兴趣,学生在思索和畅所欲言的过程中,培养了学生语言表达能力和想象能力。学生从学有用的数学延伸到自己的生活,感悟到圆在生活中的重要作用。
课后,通过与同事的交流和自己对本节课的思索,我发现有些地方还存在一些不足。部分学生对于在同一圆内直径、半径的关系掌握不够透彻,对于课堂上动态生成的信息处理不灵活,以至于处理课堂练习时时间有些不够用。
细节决定一切,要上一节生动的、令人难忘的数学课,我还需要不断磨练,在未来的工作中,我将弥补以上不足之处,提高个人理论素养,使自己的教学趋于完美。
7、《圆的认识》的教学反思
本节课的设计思路是:生活中的数学现象——提炼为数学知识——运用与实际生活。让学生去感受生活,去体验数学。
1、数学来源于生活。
这是这个教学案例的一条主线,数学来源于生活体现了知识产生的根源,还知识以本来面貌。学生从现实生活中来学数学,不仅可以具体形象的学习知识,而且让学生认识到数学学习的重要性和必要性。
新《数学课程标准》要求:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的”这一基本理念,有利于学生主动地进行观察,探究和交流等数学活动,使学生感受数学与现实生活的联系,增强了数学的应用意识。
圆是一种常见的图形,它是最简单的曲线图形,学生已经对圆有了初步的感性认识,因此,用一个牛吃草的生活情景引入新课。从这个日常生活中常见的,贴近学生生活实际的素材中,让学生在生活情景中进行学习活动,有利于激发学生的学习兴趣。
2、上升为数学知识。
在案例中,先通过观察牛吃草形成的圆形中,起决定作用的因素,发现了木桩及牛绳的作用,这些具体的事物中,教师由木桩——圆心,牛绳——半径,反映出了所要学习的数学问题,把反映数学问题的本质特征提取出来,用数学语言来概括出“圆心决定圆的位置,半径决定圆的大小”,因此,把生活中的数学问题提炼为数学知识的学习。学生更加深刻地领会到数学与数学与现实生活之间的联系:数学源于生活,要符合生活实际,但不完全等同于生活,而是高于生活。
3、应用于实际。
数学知识的学习的最终目的还是利用这些知识来解决实际生活中的问题。这样的学习才是现实的,才是学生所喜爱的。在本案例的最后所设计的发散练习中,就是要学生用所学的知识来解决问题。学生要明确如何画图,如何画操场上最大的圆,他们结合今天所学的知识找到圆心,半径,并且明白它们的作用。体现知识在生活中的应用不是单一的.,不变的。学生在画这个圆时还要知道怎样画才是最大的,就又利用了圆的其他知识,把关于圆的知识进行综合运用。
数学教学的本质是让学生体会数学与自然及人类社会的密切联系,了解数学的价值,学会运用数学的思维方式去观察,分析现实生活,去解决日常生活和其他学科中的问题,增强应用数学的意识,并建立良好的进一步学习的情感,而本案例正好是对这一本质的探索和实际。
8、《圆的认识》的教学反思
圆是一种生活中最常见的平面图形,也是最简单的曲线图形。在教学中充分联系生活实际,让学生回答日常生活中圆形的物体,并通过观察、操作、讨论使学生认识圆的形状,掌握圆的画法及圆各部分的名称,特征。学生获取知识兴趣浓厚,积极主动。
一、从生活实际引入,并在进行新知的探究活动中密切联系生产、生活实际。
接着让学生举例生活中哪些地方见到过圆课的开始,在黑板上画了一个圆,学生很自然的说出是圆。接着让学生举例生活中哪些地方见到过圆形的物体。教师事先也准备一些图片让同学们了解在自然现象,建筑物,运动领域都能找到圆的足迹。让学生知道圆在一切平面图形中是最美的`。课的结尾让学生讨论车轮为什么要制成圆的,车轴要装在什么地方并出示形象的动画,使学生具体的感知数学应用的广泛性,调动了学生学习的积极性,潜移默化的对学生进行了学习目的教育。
二、思维往往是从动手开始的,在教学中,引导学生用多种感官参与到知识的生成过程中。
要解决数学知识抽象性与学生思维形象性之间的矛盾,关键是引导学生动手操作。本节课在认识圆的各部分名称,理解圆的特征,教学圆的画法时,安排了让学生折一折、画一画、指一指、比一比、量一量等动手实践活动,引导学生用眼观察,动脑思考,动口参与讨论,收到了较好的教学效果。
三、重视激发学生求知欲。
教学圆的认识时,注重给学生创设思维的空间,注意引导学生积极体验,自己产生问题意识,自己去探究、尝试,总结,从而主动获取知识。
四、本节课,计算机直观形象、动静结合
节省教学时间的功能充分得到发挥,展现了知识发生、发展过程,加深了学生对知识的理解和掌握。
值得思考和改进的地方:
关于在同一个圆里直径、半径的特征以及两者间关系的教学。这应是本课的重点,要通过多种形式的数学活动,使学生清晰的理解掌握概念、帮助其提升思维水平。如:在同一个圆中有多少条半径,多少条直径,它们的长度都相等吗?在同一个圆中半径和直径的关系。学生在圆形纸片上通过画、量、折、比等操作活动中;怎样证明直径和半径的关系的讨论过程中。这里的教学还不够细致,有待改进。
9、《圆的认识》的优秀教学反思
一、从生活实际引入,让学生感知数学与生活密切相关。
通过谈话的`方式,提出问题:车轮、井盖呈什么形状?(圆形)为什么设计成圆形而不是别的什么形状?在这里若是结合多媒体课件演示,出示车轮和井盖,让学生在感知圆的表象上初步认识圆效果会更好。
由于六年级学生动手操作能力相对要好,所以接下来安排学生直接尝试用圆规画圆,并且大多数学生能够用圆规画出圆。关键是学生用语言表述如何用圆规画圆,学生说教师板书,在这一过程中就能知道圆规的构成、画圆的基本步骤和注意事项,这一环节的实施效果良好。在画好圆后,提出:这个圆把黑板分成了几个区域?目的是让学生说出圆内、圆外和圆上,由于过早地出示了课题,刺激了学生视觉效果,没能说出。
二、探究本节课重点、难点。
这部分分三个教学内容:
1、知道圆的各部分名称及半径与直径的关系。
2、会画圆。
3、掌握圆的特征。
教学第一部分时,直接提问:关于圆,你已经知道了什么?学生已预习过,说出圆心、半径和直径是比较容易的,美中不足是没有总结和出示准确的半径和直径的概念。作为概念教学课,这是大的失误。由于概念比较抽象,学生虽能理解但不容易用语言总结。在这里可以先让学生自学,之后完成“做一做”第一题,学生会很容易找出圆的半径和直径,然后让学生总结半径和直径的概念,效果应该会比较理想,目的是让学生理解并掌握“连接、通过、线段”这些关键词。在教学半径与直径的关系中,没有过多地强调“在同一圆中”,使教学内容不够完整。而由于课堂节奏缓慢,时间紧张,之后的判断练习也没能让学生巩固这一知识点。
教学第二部分时,放手让学生去设计,目的是让学生知道用圆规画圆必须清楚:圆心在哪里,半径有多长。从交回来的作业看,学生能够理解,但由于用圆规画圆不够熟练,完成的完整性相对较差。
教学第三部分时,圆的概念学生在徒手画圆、闭上眼睛画圆的多种感官中已完全掌握,知道圆是由一条曲线围成的封闭图形。但在教学圆的第二个特征时需要和椭圆区分开来,需要用准确的语言来表述,就是圆上任意一点到圆心的距离都相等,学生容易理解但感觉语言比较拗口。