大数据的价值,从业务角度出发,主要有如下的3点:

a.数据辅助决策:为企业提供基础的数据统计报表分析服务。分析师能够轻易获取数据产出分析报告指导产品和运营,产品经理能够通过统计数据完善产品功能和改善用户体验,运营人员可以通过数据发现运营问题并确定运营的策略和方向,管理层可以通过数据掌握公司业务运营状况,从而进行一些战略决策;

b.数据驱动业务:通过数据产品、数据挖掘模型实现企业产品和运营的智能化,从而极大的提高企业的整体效能产出。最常见的应用领域有基于个性化推荐技术的精准营销服务、广告服务、基于模型算法的风控反欺诈服务征信服务,等等

c.数据对外变现:通过对数据进行精心的包装,对外提供数据服务,从而获得现金收入。市面上比较常见有各大数据公司利用自己掌握的大数据,提供风控查询、验证、反欺诈服务,提供导客、导流、精准营销服务,提供数据开放平台服务,等等

但在实践中,我更加喜欢把数据的价值分为两个方面,一个方面是给企业创造营收,另一个方面就是给企业节省成本。整体梳理的框架如下,请大家参考:

大数据优质经验_经验和数据哪个重要_经验数据分析

除了上面我对数据价值的理解外,阿里前数据委员会主席车品觉老师从数据的应用价值出发,归纳出如下的5类数据价值,也有一定的道理,大家可以作为参考:

经验数据分析_经验和数据哪个重要_大数据优质经验

以下就是我对数据价值的理解。

欢迎大家拍砖指正,欢迎大家关注我的知乎专栏“大数据实践与职业生涯”并留言,专栏会陆续的推出过往十多年的大数据工作经验总结和我的一些研究实践成果。如果你是大数据新人,或者想转行进入大数据领域,或者大数据职业生涯上存在一些疑惑,都欢迎关注我的知乎live分享“大数据人的职业生涯规划” 、 “数据分析师-从零入门到精通”、“大数据人的数据科学家之路”。


本文由转载于互联网,如有侵权请联系删除!