模式识别

经过近10周的学习,学习了随机算法中有关模式识别的知识,对随机算法中模式识别的知识也有了较多的了解和认识,下面就谈谈自己对模式识别这方面的知识的学习心得和一些简单的总结。

首先,对于一个完整的模式识别系统,其基本上由三大部分组成,即数据采集、数据处理和分类决策或模型匹配。我们在设计模式识别是同时,需要注意模式类的定义、应用场合、模式表示、特征提取和选择、聚类分析、分类器的设计和学习、训练和测试样本的选取、行骗能评价等。针对不同的应用目的,模式识别系统三部分的内容可以有很大的差异,特别是数据处理和模式分类这两部分,为了提高识别结果的可靠性,往往需要加入知识库(规则)以对可能产生的错误惊醒修正,或通过引入限制条件大大缩小待识别模式在模型库中的搜索空间,以减少匹配计算量。在某些具体应用中,如机器视觉,除了要给出被识别对象时申明物体外,还要求给出该物体所处的位置和姿态以引导机器人的工作。

下面,主要谈谈自己对于模式识别方法的认识和理解。模式识别的方法大致可以分为模板匹配、统计模式识别、句法(结构)模式识别、模糊模式识别和人工神经元网络模式识别五个主要方法。

首先,对于模板匹配,该方法时最早出现,也是最简单的模式识别方法之一。模板匹配方法在字符识别、人脸识别等领域有广泛的应用,但该方法计算量非常大,而且该方法的识别率严重依赖于已知模板,如果已知模板产生变形,会导致错误的识别,为了改善这种情况,衍生出了可变形模板匹配方法。

统计模式识别方法,又称决策理论识别方法,该方法根据模式的统计特征,用一个n维特征空间(特征集)来描述每个模式,然后基于概率论、数理统计以及矩阵理论和向量代数的知识,利用合适的判别函数(每个模式类的特征值分布函数),将这个n维特征空间划分为m 个区域,即类别。特征值分布函数可以通过指定或学习得到。比如,字符识别器确定一个模式的类别为“a”到“z”26 类中的一个。同样地,在进行签名的有效性验证时,人们将某一签名确定为“真实”或“伪造”。统计模式识别技术对于解决分类问题非常有用。在统计模式识别中,贝叶斯决策规则从理论上解决了最优分类器的设计问题,但其实施却必须首先解决更困难的概率密度估计问题。

…… …… 余下全文


本文由转载于互联网,如有侵权请联系删除!