在很多人看来,To B 大数据都是脏活苦活累活,入行以来与众多金融企业、银行打过交道的张磊却有不同看法。从技术视角出发,张磊觉得 To B 的大数据分析其实比 To C 的好做。首先数据量要小得多,不会因为性能压力而放弃必要的分析尝试;另外,数据质量也比较可控,很少会怀疑数据的来源是否可信,这些都让 To B 的大数据分析相对简单。在他看来,做 To B 大数据最大的障碍还是在企业文化形成的壁垒上,有些企业多年来已经养成了依赖人的经验而不相信数据的习惯,部分岗位人浮于事提不出对企业真正有价值的业务问题,这些都会给数据分析项目蒙上阴影。正处于新时代的转型中场,金融业数据分析难免遇到新问题,比如引入了更多外部数据不知道怎么利用,看到互联网企业的业务创新却不知道如何应对。To B 大数据到底该如何做?基于在大量数据分析项目中的实践,张磊分享了一些自己的经验与思考。数据应用方法论没有方法论就像“盲人骑瞎马,夜半临深池”,越努力反而结果越差,因为可能走在与目标相反的方向而不自知。金融业经过最近二十年在数据应用上的丰富实践,已经形成了很成熟的大数据应用方法论,无论是系统架构、应用框架,还是分析平台和团队建设等方面,都有成熟的体系化经验可供借鉴。

张磊将其总结为如下几条:坚定的心:时刻坚持业务导向,业务目标永远是大数据应用的终极方向;融入血液:形成“从数据中挖掘价值,数据驱动业务”的企业文化,只有从管理层到一线员工形成数据价值的统一认知,才能真正把数据用起来;锻炼肌肉:通过培训竞赛知识分享,提升员工的数据分析能力,只有为分析人员赋能之后,才可以利用数据为企业赋能;数据质量:一方面要强化数据质量管理,好的数据才能分析出有用的结论;另一方面要对企业的数据有信心,有人总担心自己的数据太差分析不出结果,大量的实践证明金融业的数据可以开花结果;稳中有进:金融业缺乏互联网企业允许试错的基因,注定了系统架构和业务应用等规划都要一步一个脚印去走,以成熟技术为基础来建设,同时适度进行创新;思辨精神:不盲从于算法的神奇,不拒绝实用的查询统计,没有包打天下的终极算法,但是可以找到最适合企业自身的分析套路,注重分析所带来的效果以及分析思路的合理性;大道至简:最准确的模型未必就是最好的模型,它常常是昙花一现的过度拟合,真正能长期稳定有效的模型总是简单易懂的,坚持奥卡姆剃刀原则,坚持数据分析的极简主义。问题和数据比算法更重要百货商店之父约翰·沃纳梅克(John Wanamaker)曾说过一句在数字化营销领域赫赫有名的话:“我知道花费在广告上的投入有一半是无用的,但问题是我不知道是哪一半。

”数据分析包含三个要素:问题、数据、算法。其中,业务问题和业务目标是数据分析的起点和终点,数据是分析的基础和原料,算法是用于加工这些数据原料的工具。大部分项目的成功,这三个要素缺一不可,而前两者更是重中之重。在张磊以往参与建设的那些项目实施中,给他留下深刻印象的并非一个个神奇的模型,而是一些大家耳熟能详的名词:业务问题、数据加工、模型评估、应用策略。找到真正对企业有价值的业务问题,制定合理可行的具体目标,及时提供真正可用的高质量数据,加工出更具业务含义的数据特征,这些工作都依赖于业务岗、数据岗和分析岗的紧密合作来完成。数据团队角色分工张磊曾经与咨询公司一起帮国有大型银行规划其分析团队,国外领先实践中也把这个团队称为“业务分析能力中心”(BACC)。这个团队的理想组成是分三类岗位:业务岗、数据岗和分析岗,人员配比通常是 2:3:5,而分析建模的工作量占比通常不超过项目总工作量的 10%。业务岗是分析团队和业务部门沟通的桥梁,通常是从业务部门或分行抽调的业务骨干,他们熟悉业务流程和业务问题,能够把分析团队的成果与业务应用结合起来;数据岗是传统的数据库管理和 ETL 岗位,要求熟悉数据库理论与技术、SQL 语言玩得滚瓜烂熟、ETL 脚本稳定高效;分析岗的人力配比最高,但并非每个人都是建模高手,实际上这部分人更像是万金油的角色,除了熟悉常用的算法,还要同时能承担业务岗和数据岗的部分工作,换句话说,一旦需要他们就可能变成数据岗或业务岗。

张磊强调,有太多分析建模人员把自己视为高端人才,只愿意做算法建模的工作,不愿意做数据整理这些体力活,不愿意深入了解业务知识,就如同一位厨师既不愿意了解食材的特性,又不愿意了解顾客的口味,怎么能指望他做出一道美味佳肴呢?数据科学家这个头衔很光鲜,但全栈工程师才是它的本质。因此,从职业发展的角度来说,岗位轮换是一项很好的制度,一方面能让员工掌握更多更全面的技能,另一方面也有利于团队的稳定。


本文由转载于互联网,如有侵权请联系删除!